山西NVP行業
又可分為鹵代法、乙酐法等.先是羥乙基吡咯烷酮在溶劑苯中與SOCl,發生鹵代反應生成氯乙基吡咯烷酮,然后用KOH或甲醇鈉作催化劑脫去一分子氯化氫生成NVP,反應的實施過程如下:( 1 )NHP和苯按重量比1:0.5~0.8加人三頸燒瓶中,再把燒瓶置于加有冰塊的超級恒水浴中,邊攪拌,邊由滴液漏斗滴加入重量為NHPO.83倍的SOCl,控制速度使體系溫度不大于35℃為宜(因為羥乙基吡咯烷酮與SOCl。
再經高壓液相氨化或氣相催化胺化合成2-吡咯烷酮這種方法要簡單易行.德國專利IDE-A-2200600采用負載鈀催化劑在275℃,120bar的溫度和壓力下對順酐與氨水的混合溶液加氫,得到了收率為78%的2-吡咯烷酮.其他常用的加氫催化劑如負載型鎳﹑鉑催化劑或骨架鎳都可用于順酐/氨水混合物系的催化加氫反應.美國專利US5,101,045公開了-種由多種金屬組成的復合催化劑Co(52.7%)--Cu(15.3%)-Mn(5.1%)-Mo(2.1%)-P(1.1%)-Na(0.1%),
之間的反應為強放熱反應),滴加完畢后繼續攪拌4h,此時NHP的轉化率已達90%以上,將反應裝置接到SO吸收系統上,以除去反應副產物SO,,待SO被完全吸收后,在75~80℃下常壓蒸餾出溶劑苯,然后在真空度0.09MPa下減壓蒸餾出氯乙基吡咯烷酮.
在2-吡咯烷酮乙烯化反應中加入分子量低于1000的羥端基聚醚或C以上的線性二元醇,易使主催化劑2-吡咯烷酮鉀鹽被羥端基聚醚或線性二元醇包圍,助催化劑中的羥基基團與主催化劑2-吡咯烷酮鉀鹽之間的相互作用有利于提高鉀鹽催化劑的活性,加快反應速度.這些助催化劑有如下優點:①助催化劑加入量較少,一般為總物料量的0.5%~3%(重量比)(主催化劑加入量也在0.5%~3%之間.)
(2〉將氯乙基吡咯烷酮、溶劑苯和作為催化劑的 KOH或醇鈉按比例(氯乙基吡咯烷酮:苯=3∶1)加入三頸燒瓶中,KOH加入量為氯乙基吡咯烷酮的10%(mol).在攪拌下加熱升溫至65℃,維持溫度65土5℃攪拌回流反應3h停止反應,在65~90℃下常壓蒸餾出溶劑苯,在0.09MPa真空度下減壓蒸餾出產物NVP,未反應的氯乙基吡咯烷酮返回再進行反應.
山西NVP行業
作者的大量研究結果表明,使用醇鈉(甲醇鈉、乙醇鈉等)作為氯乙基吡咯烷酮消除反應的催化劑效果明顯比使用KOH效果好,而且醇鈉的用量遠遠小于KOH,這可能是因為KOH與氯乙基吡咯烷酮反應除生成KCl,還有副產物H,O,不利于反應的順利進行.
這些方法可分為備PVP單體NVP是未來的發展趨勢.兩大類,一類是反應路線與Reppe法相似,即y-丁內酯先經胺化為2-吡咯烷酮,然后乙烯化為NVP,只是對各步所用催化劑進行了改變或改進.如前所述,這一類稱之為吡咯烷酮法.另--類是將Y-丁內酯胺化為羥乙基毗咯烷酮,然后乙烯化為NVP,此類稱之為Y丁內酯法.-吡咯烷酮的制備及其催化體系y-丁內酯胺化法在傳統的Reppe工藝中,y-丁內酯與NH,采用高壓液相反應合成2-吡咯烷酮,此過程無需加催化劑.
而使用醇鈉時生成的副產物醇對反應影響比HO小,一是因為產生醇的量比HO少,二是因為醇比水容易揮發.以甲醇鈉為例,在鹵代反應中,氯化亞飆一直被認為是傳統的鹵代劑.
此過程為非催化過程,然后使氯乙基吡咯羥乙基吡咯烷酮直接脫水乙烯化反應比氯乙基毗咯烷酮脫HC1乙烯化反應難于進行,因而要求脫水催化劑必須具有高活性、高選擇性及穩定性.國外專利中已采用活性氧化鋁、氧化鍶、氧化鋅﹑氧化鉻﹑氧化錯﹑氧化牡、氧化锏﹑氧化欽以及部分固體酸催化劑(Ib族金屬氧化物,氧化鈣、氧化汞,Ⅲb族金屬氧化物,氧化銃﹑氧化億,Ⅳb族金屬氧化物氧化鈦、氧化錯﹑氧化鈐,VIb族氧化物,氧化鉬﹑氧化鎢除外).
MSi,x,Oa催化劑可采用下列常規方法來制備.(1)將堿(堿土)金屬鹽及硅源溶解或懸浮于水中,加熱攪拌該混合物使之濃縮至干,然后經干燥﹑焙燒即可.(2)先將堿金屬或堿土金屬化合物溶解于水中,然后用該溶液浸漬模制氧化硅,然后蒸發至干,經干燥﹑焙燒而得.(3)先將堿金屬或堿土金屬化合物溶解于水中,然后加入硅酸鹽或有機硅酸鹽,再進行混合、濃縮、干燥﹑焙燒而得.(4〉先通過離子交換法將堿金屬或堿土金屬引入分子篩骨架,然后經干燥、焙燒而得.在催化劑制備過程中,
山西NVP行業光催化分解法(以紫外光照射)及電催化分解法.若從工業化角度來看,仍以加熱分解法較為可行.加熱溫度一般控制在80~110℃.在中間體N-(α-羧酸乙基)-2-吡咯烷酮的分解過程中,分解反應易為前面加入的堿金屬化合物所促進,因而無需將前面的反應混合物加以分離,一步反應結束后可直接將混合物加熱,使生成的中間體N-(α-羧酸乙基)-2-吡咯烷酮在原位分解.2-吡咯烷酮與多種羧酸乙烯酯反應都能得到較高的NVP收率,但乙酸乙烯酯無論在來源、價格還是反應性能上都更具優勢.